What's new here?

On August 21st, 2017 a large portion of the Continental US will experience a total solar eclipse. Much of the rest of the continental US will experience at at least a partial eclipse: Philadelphia will have about 78% totality, NYC 75%, Washington DC 84%, Chicacgo 88%, Los Angeles 70%, Seattle 93%, etc.

Read the rest of this entry »

Spectrum Scientifics opened in 2007 with a load of great science toys for our customers. Since then we have seen many toys come, some toys go, and some toys get pulled from the shelves for one reason or another. Here is a list of the toys we have seen get removed from the toy list.

Note that this list does not include anything recalled due to potential ‘pieces break off and cause choking hazards’ and similar issues. We are discusing products that inherently had an issue that made them unsafe, or were used in an unsafe manner. This in no way claims to be a complete list.Merely the ones we have observed.

Not all of these things were permanently banned, either, as you will see:

Battat Magnetic Construction Toy, 2008

It seemed awesome, metal rods and magnetic balls would be used to put together nifty shapes! Great! Sadly the shiny metal magnetic balls were too tempting to swallow and they were powerful enough that two of them could ‘pinch’ in a kids intestine.

Battat and other companies rereleased this toy design with more secured magnets and non-magnetic steel balls.

Water Balz: 2012

 

Similar to popular Water Marbles, Slippery Spheres, Orbeez, etc, except these Water Balz were big! Much bigger than the little marbles that were Orbeez & Co:

 

 

Sound great? It was! But then an abusive parent shoved one down a child’s throat and it expanded with the moisture,  causing about what you would expect to happen. Toy suppliers volutarily removed the product from the market. You can still get them, but they are sold as chemistry equipment/gardening items, or whatever is needed to not have children as the primary target market.

CSI Fingerprint Kit: 2007-2008

We never carried this item, because we tend to avoid premium show-based kits which often just cost twice the price of better science kits.  But here it was in all its glory: A fingerprint kit with a chemical that was 7% asbestos. Ooops!

This incident, along with several other famous cases (such as the Thomas the Tank Engine Lead Paint incident) showed there were many problems with sourcing products in China. Too many times corners were being cut, and dangerous products being substituted, and other safety issues. Toy companies that imported had to start doing local testing of the products for safety, and quite a few gave up mass-importation. In China, things got very ugly with at least one head of a factory traced back to the safety issues first imprisoning an investigating journalist then hanging himself.

BuckyBalls: 2011

Incredibly popular when they were out, now these have almost been forgotten. Buckyballs were technically never sold as a toy for children, and the manufacturer took pains to try to keep them out of the hands of kids. But the Consumer Product Safety Commission, after adding on multiple sales conditions restrictions,  finally demanded the magnet sets be banned. The reasoning was the same as happened with Battat’s construction toy: kids swallowing the magnets would have them ‘pinch’ in the intestines. The company pretty much disappeared after this ban, but returned this year with a smaller, complient tiny magnetic ball kit.

But the magnet ban? It sent shockwaves through the toy indutry as toy sellers scrambled to remove the powerful rare-earth magnets from various toys.

Eventually, another manufacturer of the magnetic balls sets won a lawsuit against the CPSC and the magnetic balls sets are once again legal. But still cannot be sold to children.

www.spectrum-scientifics.com

 

 

Lasers, we do love our lasers! From the classic Red, to the bright Green, to the sneaky, changing Violet we love the fact that we can have such a unique pointing device in our hands.

But laser pointers have undergone a few changes in recent years, and some of the changes may be hard to figure out. Times were they were all like flashlights: one end would screw off and you would insert the batteries (AAA or button cell). They would resemble this laser pointer:

Read the rest of this entry »

It’s been just under a year since we had an update about the CPSC’s favorite target: Those little spherical magnets commonly known by the brand name of BuckyBalls.

As you may recall, BuckyBalls came on the market a few years back, made quite a splash, but were then hounded by the Consumer Product Ssafety Commission to the point where these magnets were effectively banned.  Another spherical magnet supplier, known as NeoCube, also fell by the wayside, but a 3rd company, the almost unknown Zen Magnets (who apparently were first in with the product but last in overall sales due to BuckyBalls and NeoCube’s aggressive wholesaling campaign.) made the effort to fight back at the CPSC and actually won their court case.

Sadly, that was not the end of it. Zen Magnets has spent the better part of the past year just getting things in order for a new rollout of the classic spherical magnet product. Meanwhile they are bracing for another possible round of legal battles with the CPSC.

It might not come to that. The CPCS commissioner is on record as saying the following:

“We’re doing this without taking the time to learn the lessons about why we failed the first time, or if there’s any need for the rule… I think this is a factor of pure ego, and this agency has taken the thoughtful opinions of the 10th circuit personally, and we just wanna win for winning’s sake…”

The CPSC removed the rule on 3/1, as ordered by the court. But almost immediately the commission voted to implement a new rule regarding magnets. The precedent is set, however, so a rule as draconian as the last one would be lost in court even faster.

Meanwhile, what happened to the other companies? No idea what happened to NeoCube – their inventory was sold Zen Magnets (which may have caused them quite a bit of a legal headache) and we can assume they are long gone. Zen Magnets is in position to restablish spherical magnet sales. The folks who made BuckyBalls? Well, while Zen Magnets was fighting the legal fight against the CPSC they released a set of tiny rare earth magnets that they sarcastically named ‘Compliance Magnets’

Perhaps taking a hint from these Compliance Magnets, the makers of BuckyBalls released SPEKS. A set of rare earth micromagnets that is also compliant with the CPSC’s old rule.

Time will tell if they succeed with this product. Having personally handled such ultra-tiny magnets I find they had some appeal, but lacked the fidget potential the classic larger Spherical Magnets posessed.

 

As for our store? Well, we have our own (as the top image shows), and can sell them until another ban comes down. Sadly we can only sell these in-store at the moment.

www.spectrum-scientifics.com

Our ‘10 Fun Facts about Labware” blog post was actually pretty popular (the internet loves lists), so we thought we’d do a sequel to talk about other oddities of the labware world.  Here we go

10) Condensers are all about the surface area and Hollywood loves them – So you’ve got some gas, right? And you need to get it back to liquid state, right? Because that gas is gonna disspiate if you just let it run free, but how can you get it cool enough to turn liquid in a limited amount of space and have that liquid end up in a flask or something else? The answer is a Condenser!graham

Condensers (particularly Graham condensers) are popular in Hollywood depictions of laboratories as they have that neat swirly tubing inside another tube. Run some colored liquid through them and they look awesome!

But why all that swirly tubing? Well it turns out that you need a decent amount of cooling to turn a gas into liquid. So the curling tubing is actually trying to expose the gas in the tube to as much of the cooling liquid that fills the outer tube. That liquid (usually just water) is fed in from the top and drains out the bottom as it would otherwise get too warm to cool down that gas before it exited the tubing.

Hollywood, BTW, loves showing condensers because it is neat to watch liquid swirl through all that spiral tube, even if it would serve no purpose as shown.

9) Attachment sizes and what they mean – Every now and then you might encounter a piece of labware that has some numbers associated with it. 24/40, 19/22 , and many other sizes. So what does this mean?

3590Well this is a measurement to see if one piece of labware will attach with another. The sizes denote ground glass openings on the flask, condesner, etc and therefore should be compatible with a labware with the same kind of measurement. When these attach, the ground glass openings provide enough friction to keep them connected but not so connected that they cannot be seperated easily.

As to the actual numbers and what they mean – the first number corresponds to the diameter at the end of the ground glass zone (so 24 is 24mm) while the second number corresponds to the length of the ground glass zone (so 40 is 40mm).

 

8) Evaporation flasks  – So the opposite of condensation is evaporation. Naturally there are a lot of ways and reasons to evaporate liquids, the most common being to simply boil it. But sometimes you need a less…energetic way of evaporating liquids (volitiles like alcohols, for example, may not rotaryevaporatorappreciate flames). So one common method is to use a rotary evaporator:

Rotary evaporators are fairly complex systems that pretty much just speed up (and contain) what would otherwise happen to low-boiling points liquids exposed to room temperatures. You’ll sometimes see special evaporation flasks with oval shapes: these are designed to get the maximum surface area on the heat section of a evaporation system.

 

7) Filtration:
Sometimes you may spot a Erhlemeyer Flask with a tube sticking out of it. 5444-2This is called a filtering flask. It uses a couple of other pieces of equipment to operate: First a felxible tube is attached to the glass tube and then to a pump (powered or hand operated). A stopper with a hole is put into the top of the flask which goes to a filtering funnel known as a Buchner Funnel. Some filter paper is placed into this funnel. You then activate your pump (which means you have some hard work if a hand pump is being used). The liquid in need of filtration is then slowly added inot the top of the funne;. The drop in air pressure pulls the water through  the filter paper and funnel leavs behind any solids or other materials.

 

6) Volumetric Flasks:
1886If there is a ‘piece of labware most likely to be repurposed’ it is the Volumetric Flask. With its long stem and round bottom it is possible they beat out ‘small beakers turned into shot glasses’ by being turned into flower vases. But the volumetric flask actually has an important role in chemistry. If you need to make a solution of a particular Molar (a measurement of how much of a reagent is in a set quantity of solution) the best way is to use a Volumetric Flask. Measure out the quantity of reagent for the solution you are making, and add it to the measured solution in the flask. IT is as accurate as you can get and the best way to mix said solutions. The Volumetric Flask combines the accuracy of a graduated cylinder with the mixing ability of a normal flask (Such as a Ehrlenmeyer flask or round-bottom flask)

5) Separatory funnels:

This odd-looking inverse teardrop shaped piece of labware may, oddly enough, be more familiar to some readers 3218of this blog post as they are often used in beer brewing and similar hobbies.  Separatory Funnels are used when you need to seperate two liquids from each other (such as oil and water, yeast and water, etc.). The differing densities of liquids well seperate out inside the funnel (some shaking may be involved). Once sepearted the more dense liquid can be drained out the tube in the bottom, leaving the less dense liquid remaining in the flask.

4) Labware for a new generation (Class A Coding)

OK, so this is an issue for laboratories where critical measurements are required. As we mentioned in our previous chapter there is special labware known as ‘Class A’ labware. This is labware certified to extreme accuracy and even has to be certified, either by the batch or individually (which is more expensive). The problem is that labs may be required to show that their labware is certified for one reason or another. The certification, however is usually a piece of paper that gets filed away or lost, leaving the lab struggling to find the right papers and possibly contacting the manufacturer. So what solution is there? A modern one where your Smartphone can check your labware’s certification. That’s right, Class A labware’s certification will soon be bar-encoded!

barcodelabware

Now rather than running to the file cabinet you can simply catch the barcode on your Smartphone and your certification will come right up! Couldn’t be easier!

3) Lipless and Lipped Test tubes

So test tubes come in two forms – with a lip (which helps with pouring) and lipless (which….has no real advantage). Plastic test tubes typically are lipless to reduce expense. In fact it is not certain why lipless test tubes are made except that many folks buy them for no-laboratory uses. Most of the ones we have sold a the store are repurposed – usually to hold flowers (its a thing).

2) Types of plastic labware and what they do

So we discussed plastic labware in the previous chapter. But there are actually several types of plastic that are used in labware. Polyproylene (PP), for example is economical and very hard to break. Unfortunately is it also not as transparent as glass and may be hard to read the markings. Polymethylpentene (PMP) is as clear as glass so is much easier to read. Unfortunately, it is also much more expensive than PP and may be more p50902brittle. It becomes a question of priorities.
1) Plastic Pipettes and their uses

Little plastic pippetes are another item in heavy use outside the laboratory. These little soft plastic droppers come in a wide variety of sizes and shapes. Some are measured, some are not. They can come sterile or not, etc.

In the lab and medical field they are used to draw small, controlled quantities of liquid. In medicine they are used to grab a sample of blood from a source (they are not used to draw blood, obviously).

Outside the lab? The limits are people’s imagination! Gold Hunters use them to draw the small flakes out of liquid known to have gold flakes.. Bakers use pipettes to both insert fillings into cupcakes and cakes (to make patterns they could not do otherwise) or even just fill them with coloful icing and stick them into the cake to make an attractive ‘bulb’ cake ornament. In addtion to icing, liquers can be used, or other flavorings. Food artisans have taken to using pipettes to ‘inject’ fruit with various flavorings as well!

www.spectrum-scientifics.com

 

 

 

For the hobby of astronomy, the biggest obstacle of all time is light pollution. Hands down. The more lights in yiour area, the less you will see.

We try to fight it when we can. Petition for lights that reduce upward glare, maintain some dark sky locations, and advocate for limiting new lighted areas. But on an individual level, there is only so much we can do to fight light pollution.

One of those things is to employ a light pollution filter.

069

Read the rest of this entry »

This is a repost of our usual post-holiday telescope primer for new telescope owners:

So you got a new telescope for the holidays: A Quick Primer for new telescope users.

Be it X-mas, Hannukah, Kwanza, Solstice or Giftmas this is the season for getting telescopes as gifts. Sadly, many of these scopes might be rushed into usage and some critical steps might be 016skipped. This can result in a frustrating experience for a budding young astronomer who may give up their new hobby prematurely. This can be avoided if you only take the time and a few precautions to make certain you get the baby steps out of the way without too much tripping and falling.

1) Do as much as you can during daytime first!

I can’t stress this too much. Many folks assume they can assemble their telescope right out of the box at their chosen viewing spot – in the dark. Suffice it to say this is not a good idea. Assembling out of the box at the viewing site might be an extreme example but you should certainly try working your scope and getting the ‘feel’ for it during the daytime as much as possible. Take your telescope outside during the daytime and point it at a nearby tree or other object (the object should be at least 1/4 mile away). Use this object to align the finder scope (see below) as well as test how the eyepiece focuses. Try changing your eyepieces between the low and high powered ones to see how that works as well. Move the telescope in large movements as well as using the slow motion controls as well. When you do these things in the daylight you can get a much better feel for how they should work than if you try them at night. Also if you drop an eyepiece or loosen a screw you have a decent chance to find it. Get your mistakes out of the way when the sun is up.

2) Assemble your telescope properly

This should go without saying, but it is amazing how many folks skip a few steps or don’t attach parts, or don’t read the instructions properly. We’ve seen telescopes in for “repairs” just after the holidays that were just put together wrong, or some critical final steps were ignored (slow motion controls not attached, counterweights not placed). Most of the time, there are very few non-critical elements of a telescope’s construction. So be sure to follow the assembly procedure carefully. Allow yourself a couple of hours as well (maybe three hours for certain models of dobsonian telescopes) for the assembly. Don’t assume you can just put it together a 1/2 hour before you plan to head out and view.

3) Align your finder scope. Align your finder scope! ALIGN YOUR FINDER SCOPE!

Get the point? Many folks ignore this step until the last minute and we can tell you that trying to work a telescope without an aligned finger is very,very, very hard. Even the lower 084magnifications on a short focal length telescope only see a little under 1 arc degree of the sky. This is a tiny portion of the sky so hoping to find an object with just the eyepiece is really hard to do. There is a reason why almost all telescopes come with a finder scope. So make sure to align it (During the daytime per suggestion #1) . If your telescope comes with a red-dot finder instead of an optical finder scope, be certain to carefully align that as well during the daytime – and don’t forget to switch it off! A dead battery in a red dot finder is nobody’s friend.

4) Did you get an Equatorial mount? Figure out how it moves!

An equatorial mount has some great advantages over a regular altazimuth (altitude-azimuth) mount. It can track, be motorized, and the larger ones can even be used with setting circles to locate objects in the night sky. But these are only true if you take advantage of the equatorial mount’s features and set it up properly. During the daytime (suggestion #1 again!) try a rudimentary set-up of the equatorial mount. This does not have to be super accurate as some telescope’s instruction manuals may require, just enough to get mostly accurate tracking for a little while. Perhaps more importantly, get a feel for how the telescope moves – you are used to moving things in an up/down left/right fashion. Now you need to get used to moving the telescope in declination and right ascension. Try moving the telescope from one target to another using the mount properly during the daytime to get a better sense of it. One thing to keep in mind is that the counterweight is there for a reason – it shouldn’t be pointing down all the time.

If you have a larger Equatorial mount keep in mind that you can use the setting circles to help find objects in the night sky with the help of a star atlas. But this means you have to learn to use it. Read your instruction manual carefully. You might also consider downloading a Sidereal Time app for you smartphone. You’ll see why once you figure out the details of using your Equatorial mount.

5) Choose your first targets wisely!

Many folks go out with their telescope and just point it at the brightest thing in the sky. This is fine if the brightest object is a planet or the Moon, as there is lots to see. But very often at this time of year the planets might not be out until very late and the brightest thing in the sky is the star Sirius. Problem is, Sirius is just a star and stars appear as just a point of light even when magnified through your telescope. This can be a very boring target and can be disappointing if it is the only bright object. So make certain before you go out for your first night’s viewing that you know what will be up! Most telescopes these days come with some rudimentary planetarium software that can show you what the sky will be like on any night. Failing that there are online websites that do the same thing (sometimes better). Planispheres can also be used, and if you have a Smartphone or pad you should download a planetarium app like Google Sky (its free). Depending on what time of the month it is, the Moon may not be up during evening hours. Since we suggest the Moon as a great first target for your telescope you might want to wait for it. Failing that, try to look for the brighter planets.

6) Got a computerized telescope? Take advantage of free smartphone apps to make it much easier to set up!

We’ve been kind of ‘meh’ about computerized telescopes in the past, and are still a bit wary of a telescope where 70% of the cost is in the computer andGoogleSky motors and not the optics. But we have softened a bit since they have become a bit easier to use – and not because they changed, but rather our phones did.

Computerized telescope makers kind of make it seem like a computer means your telescope will magically find things in the night sky. All you need to do is toss it into your yard and enjoy the viewing. But that is not how they work. To set up the telescope’s computer you need to point it at two named stars so it can calculate where everything else in the night sky is located. This used to mean that to set up the telescope you had to have good knowledge of the night sky to find those stars -which kind of defeated the purpose.

But now smartphones are ubiquitous these days and there are plenty of planetarium apps out there for free that will help you identify those stars. Smartphone planetarium apps are not super-accurate (they can be off by as much as an hour)  but they will help you spot and identify bright stars that you need to aim your telescope at to orient the computer.  This makes the computer orientation much easier to do than trying to learn to use a planisphere or star map on the fly.

7) Learn, learn learn!

There’s a host of information for astronomy newbies on the internet and in books. Amateur astronomers are very keen on sharing their knowledge and experience with you. Check out the major magazines online websites such as Sky & Telescope or Astronomy. There are a zillion astronomy websites with forums as well you might wish to peruse. Even on this blog we have a collection of Telescope Tips you should check out for helpful advice. Also consider joining or at least contacting your local astronomy club – you can find all kinds of help from them, as well as many other benefits from membership (such as loaner equipment).

If your first night with your telescope is a good one, then you’ll have a much better time with the hobby. But always remember a little planning goes a long way!

Happy New Year!

Interested in buying telescopes?

www.spectrum-scientifics.com