What's new here?

The holidays have us pretty busy, so here is our Microscope Buyer’s guide for those seeking to buy one!

Spectrum Scientifics Microscope Buyers Guide

Congratulations! You’ve decided to buy a microscope! A microscope is a wonderful instrument that can fascinate kids and adults alike. With proper care, a microscope can last a lifetime. But buying a microscope can be confusing for the first time buyer. There are so many different designs, it can be a bit overwhelming. This guide should help you make the proper choice in deciding on a microscope model.

First let’s start by discussing the different designs of microscope. We will break microscopes into three different categories: Compound Microscopes , Inspection/Dissection Microscopes, and ‘Other’. We’ll cover these one by one.

Compound/Biological Microscopes : Compound (or Biological) microscopes are the models designed to be used with slides. They are high powered; using multiple objective lenses (the lenses that point at the slide) to typically provide 40X, 100X, 400X and sometimes 1000X right off the shelf. Modern compound microscopes usually have some sort of illumination from below to light up the slide. Depending on the design of the compound microscope it may have features like binocular eyepieces (two eyepieces, but do not provide stereo vision) a mechanical stage for moving the slide easily, coarse and fine focus (for easy focusing) and different lighting designs.

The disadvantage of a compound microscope is that you pretty much must use it with slides. You can’t just plop a bug, coin, or plant leaf onto the microscope and expect to get a decent image. Compounds aren’t designed to do that. You can cut up the leaf/bug/whatever and make it into a slide with some effort and a slide-making kit, but that does take some time and only lets you view s small part of the the found object.

Inspection/Dissection Microscopes: Inspection/Dissection microscopes are designed to be used with any object you can fit on the microscope’s staging area. This can be coins, stamps, bugs, plant parts, circuit boards, small animals, or whatever else you might find. Inspection Microscopes often have much lower magnification (10x-40x is typical), much wider viewing fields, and very often the binocular versions give true stereo vision. This allows the viewer to ‘work’ (I.e. dissect) on the object being viewed and get a true sense of depth of objects like coins. Inspection Microscopes may have only 1-2 levels of magnification verses the 3-4 on compound microscopes. The microscope will also have top-down lighting, and some may have bottom-up lighting as well. The eyepieces used in many mid-range inspection microscopes are often larger and more comfortable to use.

The disadvantage of a compound microscope is that its magnification is very low and you cannot use it with slides. That means if you want to see cells, bacteria, or other very tiny objects you will need to get a compound microscope as well.

As you can tell from these write-ups, these two designs are very different from each other. Before we discuss the third category, let’s compare and contrast these two designs:

Features: Compound Microscopes vs. Inspection/Dissection Microscopes

Compound Inspection/Dissection
Magnification High: 40x and up Low: 10-40x typical
Levels of Magnification 3, sometimes 4 (40x, 100x 400x typical) 1 or 2*
Lighting From Bottom From top (or top and bottom)
Viewing Monocular or Binocular, but not true stereo Stereo Binocular
Viewable Objects Slides Coins, stamps, bugs, plants, circuit boards, etc.
Extra Features (depends on model) Mechanical Stage, Coarse & Fine Focus, Bottom light
    *Some models of Inspection Microscope have a continuous zoom from 10x to 30 or 40x

This chart should give you some idea of the basic comparison.

We haven’t forgotten about the third category of microscope: Other. This category covers some odd designs that work as specialty instruments. Some examples of Other microscopes would be:

Hand-Held Microscope: These are small, pocket-sized microscopes used in a fashion similar to Inspection/Dissection microscopes. They may have higher magnification than Inspection microscopes (30-100x power), often have a built in light, and are light and portable. Their main disadvantage is they have a limited viewing field- you must put the scope directly on the object being viewed. Their optics & lighting are also rarely up to the quality of full-sized microscopes, and moving to find a specific part of an object can be tricky. Still they are great in the field where a full-size microscope would be unwieldy.

Digital Microscopes: Many traditional microscopes can have a digital camera built into their structure, or can have their eyepiece replaced with a digital camera. But some microscopes are designed from the ground up to be used as high-power digital microscopes. These items have no eyepiece, only a CCD camera and an objective lens. They may have fixed or variable magnification, and the computer screen resolution will vary from model to model. Many ‘toy’-like designs have VGA quality graphics, which is 480 x 640. This level of quality is acceptable for kid’s use but is not sufficiently detail for any real work or study. Usually 1.3 Megapixels is the highest quality available for devoted consumer digital microscopes. If you desire higher resolution a compound microscope with a digital microscope eyepiece might be in order.

High Power Magnifiers: A hand-held magnifier is a very different instrument from a microscope, seeing as how most magnifiers have about 2-3x magnification and microscopes can go as high as 1000x. But some close work magnifiers have very high power (10x and up) and the line between a microscope and a magnifier starts to get blurred. As far as optical design goes, they are still very different animals: The magnifier has just one lens (or set of cemented lenses) while the microscope has both an objective and eyepiece lens. Although the difference is there, the jobs they cover get blurred. If you need a lower powered microscope or a high power magnifier, make certain you are choosing the correct tool for your viewing needs.

Hybrid Microscopes: Given the difference in use between a compound and an inspection microscope it didn’t take to long for some folks to come up with a design that tries to do the job of both microscopes. Usually this is done by taking a compound microscope design and adding a top-down light to the system. These designs can be a great boon to parents or buyers who cannot decide which usage they would prefer. The disadvantage is that like many other things that try to do multiple jobs, they are not the best at either job. Most often hybrid microscopes are better at being a compound microscope than an inspection microscope (mostly due to the higher powers of a compound microscope), but at least the option for using the microscope both ways is available. Consider a hybrid if you can’t decide between designs, but remember it won’t do the job as well as a devoted microscope.

Toy Microscopes: Many ‘toy’ microscopes are available on the market, usually they are either plastic hand-held models or plastic versions of compound designs. The former can be great fun for small children who would like to have something to view nature close-up but can still handle their not-always-delicate hands. The latter, however, is usually to be avoided. Cheap plastic bodies and cheap plastic lenses will give the viewer a very poor experience indeed. Companies that make these items often pile on junk accessories like plastic ‘viewers’, poor slide making accessories, and other gimmicks to cover the fact that the instrument is junk. Avoid these if at all possible.

OTHER THINGS TO CONSIDER

So now that we’ve discussed the various microscope designs, we should talk about that are features of microscopes:

DIN Objectives: DIN stands for Deutsches Institut für Normung – Don’t worry about that. Just understand that DIN eyepieces are set to a higher standard the the average beginner microscope. DIN objectives are generally universal so you can take one DIN objective out of one microscope and thread it into another. DIN eyepieces are often a bit more costly.

Digital Microscope Eyepieces: Digital eyepieces can be a great boon to your viewing experience. When plugged into a computer they can be used to view objects on a much larger screen, and the images can be saved, modified, emailed, etc. Some digital eyepieces can make movies as well. Some microscopes have digital eyepieces built into the body of the microscope, but almost all non-toy microscopes can have their eyepiece’s removed and replaced with a digital microscope eyepiece. The image quality from a digital microscope eyepiece can go from VGA (or even TV) quality all the way up to 5.0 Megapixels or even more.

ACCESSORIES:

One nice feature about microscopes is that they don’t need a whole lot of accessories to get a good experience. But there are a few things you can get to increase your viewing experience:

Prepared Slides: Professionally made slides are always excellent to have around. They let you see objects with a quality that few can match. They also may be of specimens that may be very hard to obtain. Consider having a few prepared slides to enjoy.

Slide Making Kits: Sooner or later you will want to make your own slides. This will involve blank slides, coverslips, a razor (for cutting samples) and some mounting medium. These can be bought individually, but it is often more economical and convenient to buy a kit.

Special Slides: Blank slides with concave dips can be obtained for holding liquid samples. This is excellent for examining microscopic life in pond water and other sources.

Slide Boxes: Once you make your own slides you should store them properly in a slide box. Don’t leave them to get dust and scratches.

Microtome: If you make a lot of slides, cutting thin sample sections with a razor can get annoying after a while. A microtome can help. It is a mechanical device that helps cut a thin sliver off the sample. Think of them as working like the meat slicer at your deli only on a much smaller scale. Microtomes can be hand driven devices for around $75 to fancy automated item costing hundreds or even thousands of dollars.

CONCLUSIONS:

As mentioned above, before you decide on what model microscope you want, make sure you know what it is you want to do with it! Fun can be had viewing both prepared slides and making your own slides using a compound microscope. But it can also be a real thrill to take objects straight from the backyard, or even from your pockets and put them under an Inspection/Dissection microscope. If you have needs beyond having fun observing (research, coin collecting, etc), make certain that your microscope does that sort of job first and foremost.

Happy viewing!

The holidays mean less time for blog posts and more people looking into buying their first telescope. With this in mind we are reprinting our telescope buyer’s guide for the season:

Spectrum Scientifics Telescope Buyers Guide

There are several telescope buyers guides available on the Internet, some good, some not so good. At Spectrum we are writing from our experience with customers and hope to make this simple and helpful.

Towards that end, the first and in some ways only rule of telescopes is:

Aperture is King!

Aperture is the diameter of the main lens or mirror of the telescope. The bigger it is, the more light the telescope gathers. Do not judge a telescope by its magnification, and stay away from any brand of telescope that sells itself on excess magnification claims (300x!, 600x!, etc.). This is sure sign of poor quality.

More light gathering means better, brighter images, assuming all other things being equal. Decent commercially sold telescopes usually start about 60mm in size (about 2.3”) and go to 20” diameter or more. Roughly speaking, every 2 extra inches of aperture doubles the light gathering capacity of the telescope.

The big problem with getting more aperture is that it increases the size and weight of the telescope. Having a huge, giant telescope with lots of light gathering power has little benefit if it is so heavy you never want to take it out and use it! A minor, but critical caveat to the ‘Aperture is King’ rule is that the small, portable telescope that gets used all the time is more powerful than the giant telescope that never gets moved out of the garage.

Read the rest of this entry »

Few telescopes in this world are as….distinct as the Edmund Astroscan, I mean, _look_ at it:

astroscan

The Astroscan may hold a record for the longest running mass-produced telescope on the market, possibly only beat out by some of the classic Cassegrain models. It is also was one of the most controversial telescopes made (at least that wasn’t an outright scam or waste of people’s money). A simple search for the Astroscan in Astronomy forums reveals that the little red telescope has many detractors, and many defenders:

“I’ve never seen one that was in collimation”

“I love it! It is so easy to use!”

“Its an old design that should have been put to rest a long time ago, there are much better models in that size and price range!”

etc…

The back and forth actually reminds me more than a little bit of of the old Mac vs. PC wars on newsgroups, where PC advocates objected to people buying things that might not have been as  powerful or economic as what they used and Mac advocates vehemently defended their choices with rabidity and dared to be a fraction of the marketplace. Of course, in this case the scale was much smaller.

So what was the story behind this little telescope? Why was it so different than other telescopes? What happened to it? Why was it so loathed and loved? I shall try to answer these questions with my limited experience of having worked for Edmund Scientific for the last couple of years that the Edmund family owned the Scientifics division (The Edmund family still owns the Industrial Optics portion of the company).

In The Beginning

In 1976 the Edmund Scientific company started developing a telescope that would be its flagship model. The idea was to make something that was easy to use, easy to transport, and wouldn’t look out of place in a 1970’s Living Room. Given that in that era almost all commerically sold telescopes were tripod mounted things that took up a lot of real estate when set-up this was bit of a sea change. The optical system was developed so that the customer would not have to do any maintenance (or collimation) that reflectors often required. It was also designed with an optical window so that dust and other debris entering the tube would be minimized. The body was developed out of ABS plastic to be as durable as possible, and was smooth enough so that it would ‘roll’ on its base without being so slippery as to move with a hard breath.

Some decisions were made for its contruction. It initially did not have any aiming mechanism as it being a rich field telescope was assumed to be good enough to along (it wasn’t). The problem was mostly aesthetics: Any aiming mechanism would spoil the clean lines fo the Astroscan’s body. Eventually a sheet metal aiming deveice was developed that helped. Later models, as shown in the above picture, had a red-dot finder added for aiming.

The Astroscan was aimied squarely at novice users and this was both a help and hinderance. Hardcore amnatuer astronomers were grumpy that so much effort was put into a telescope that wasn’t aimed at their needs, and didn’t address what they felt was ideal in a beginner telescope. The validity of their arguments continues to be debated to this day.

Or harder barrier for the Astroscan to overcome was its low-power. Being a rich field telescope with only 1 eyepiece included it had what seemed like an anemic 16x magnification. This was in an age where retail department store telescopes were sick with ludicrious claims of unattainable magnification (640x!!!!). Edmund had hope to have their new telescope sold by wholesale as well as through their famous catalog, and seeing this stylish but-low-powered telescope next to the fake claims of cheaper telescopes was a hinderance to those long-term wholesale plans.

Other features of the Astroscan were controversial: To reduce costs the focuser used a rubber wheel (as opposed to a rack and pinion system) that would press against the eyepiece’s base and move when the focuser knob was turned. But this wheel would develop ‘flats’ that made for a bumpy focusing experience, and in very cold weather it could shrink and not ‘grab’ the eyepiece properly. That said, some people loved it, include the founder of Orion Telescopes, Tim Geisler.

Other features of the Astroscan would be introduced later, mostly as accessories: A threadable solar projection system, a moon hook that would allow the Astroscan to be mounted to classic Equatorial mounts, a camera-style tripod that was designed especially to allow the Astroscan’s base to thread onto it, an image inverter, and a few more items were developed.

The Astroscan did will as telescopes sales go. The exact numbers are unclear but in its lifetime it is assumed to have sold around 90,000 units, making for around 2400 units per year, which is good numbers for a company that does not exclusivelty sell telescopes.

The Mid Life Crisises-es-es

The Astroscan had been planned on being sold below $100.00 and much of the developement issues were based on that cost limit. But this was to cause a few growing pains for the Astroscan. For one, the 70’s were an era of major inflationary pressures and keeping costs down just was not possible. At some point in the 80’s a decision was made to move production to the less expensive Japan. Production began in that nation after many, many, many long meetings and trips by the senior brass from Edmund.

Japan’s production, like most things in the Astroscan’s history, was polarizing. Some considered the Astroscans of that era to the worst ones ever made (even calling them ‘Astroscams’) while others declared Japan’s attention to optical details produced some of the best models made. In any case, production costs in Japan rose steadily over the years to the point where, when combined with the overseas shipping costs, it was no longer economical to produce the Astroscan in Japan. Production was returned to Barrington, NJ in the USA.

By this time, the Astroscan had quite a number of years since its development and was starting to look a little long in the tooth. It hadn’t had much attention paid to its design in years (the last major changes happened when the production was moved to Japan). There were other issues:  The Astroscan screamed 70’s design, but not loudly enough to provoke nostalgia. It’s cost had also rised to over $350 Much higher than optically similar models), the product copy hadn’t even been rewritten in what seemed liked decades (dated-sounding references to ‘Space-Age design’ were still present as of the 1999 catalog).

Other issues were a problem. Edmund has introduced a series of lower-cost beginner telescopes to work as a fleet with the Astroscan as the Flagship, but none of them garner much success. The wholesale program became a morass as other retailers undercut Edmund’s pricing, or even broke up the telescope into its component parts and sold them individually to get around any Minimum Advertised Price policy Edmund might introduce. The wholesale program also did not account for retail inventory needs, so telescopes were often shipped out to other retailers when Edmund’s own retail telescope sale needs were not fulfilled.

Even worse, the patent on the design was due to run out in 2000 and a slew of imitators came in. The most visible of which was the Bushnell Voyager

voyager

The Voyager was not as sturdy as the Astrscan, having a coated styrofoam body instead of ABS, but it had a cost of $199 vs the Astroscan’s $360. Other imitators soon popped up, such as the Orion Funscope:

funscope

Other, ‘interesting’ Astroscan imitators appear courtesy of Edmund’s Chinese agents. The most internally infamous of which was a model (one never developed for the consumer) which was just straight optical tube shoved into a painted metal ball. It was immensely heavy compared to a traditional astroscan and had just a piece of colored tape to cover the seam between to the tube and the ball. The telescope famously used the rack end of a zip-tie for its focuser rack. Oddly enough the optics in the telescope were not bad!

Still, it seemed like something needed to be done:

The New Astroscan that never was.

In 2000, plans and committees were set up at Edmund to help revitalize the aging Astroscan. Message boards were inquired, costs assessed, ideas explored. Et cetera. Among those plans it was decided to do an ‘almost-overhaul’ of the Astroscan. The optics would be changed to more modern and less costly counterparts. A mechanical engineer was sourced to develop and improve the focuser. Sourcing parts from Asia was explored to reduce cost while still keeping the production in the USA. Eyepiece changes were considered and it even variations on the body color (a star pattern on black was considered, not uncommon today but radical for the time) were considered, as well as a possible oversized (6″ mirror) version! The overall plan was to get the Astroscan competititve in the new playing field, to answer as many of its criticisms as we possibly could, and overall revitalize what had become a dusty corner of the world’s telescope offerings. How much would the new Astroscan differ from the old one? We’ll never know.

In 2001 it was announced that Science Kit & Boreal Lab would purchase the Edmund Scientific. All work on the New Astroscan Project ceased. Edmund continued to produce the Astroscan for SK&BL while they consolidated the move to their facility, but eventually they set up production of the Astroscan in China. The quality was a bit more concerning and the classic RKE eyepieces were replaced with generic Plossl eyepieces (partly because the Edmund family still claimed the rights to the RKE eyepieces and sold them in their Industrial Catalog for years afterwards).

Under SK&BL or one of the other administrating companies the Astroscan continued to be sold until 2013, when disaster struck.

What’s in a Mold?

Its not clear what happened, but somewhere someone dropped something shouldn’t have, or something wore out, or …well anything. The mold used to produce the Astroscan body broke. That is all we know at this point. It could have been wear & tear, having been used to produce at least 90,000 telescope bodies.

Molds are costly, and while developing a new model could have been done it would have required new machining, new engineer work, and a host of other aspects. ScientificsOnline decided to not produce a new mold. Instead they introduced the Astroscan Millenium, a mini Dobsonian with similar optical characterisics.

astroscanmill

Oddly enough, this ‘new’ design solved all the issues that critics had complained about with the Astroscan: it had different eyepieces, you could now collimate it, etc. Of course it lost its classic design and character in the process, and if that design looks a bit familiar it is because other companies have been producing for over a decade:

009

It essentially a red version of the Orion Starblast Mini-Dob. The irony here is that the StarBlast was designed to match the optical features of the Astroscan. Welcome to your closed circle.

The Aftermath

Although not as rage-inducing as the PC/Mac wars, there definiately was an element of form vs function withe Astroscan. Yes, they did go out of collimation despite the claims, and it was very hard to get them back. That said, I have seen ones bought in 2nd hand stores on the cheap that were perfectly collimated – everything else was messed up, however.

The simple fact is that Edmund Scientific was not really poised to become a full manufacturer of telescopes like Meade, Celestron, or Orion. They had a great contender with the Astroscan, but all of their other models were not as able to support their costs of development. While some of the telescopes  Edmund made in the 60’s were classics, they would not be able to compete in the modern market.  Edmund did not develop an import line of telescopes the way other major telescope brands did. This is not a surprise as the Edmund company found there was more money to be made developing industrial optics than there was in the telescope market.

The Spirit of the Astroscan is not gone forever, either, Astronomer Norm Sperling, who actually worked on the original Astroscan design ran a Kickstarter Program to develop an Astroscan inspired telescope.  In fact, it is essentially the Astroscanmade by more modern methods and suppliers. The kickstarter has ended, however, and it is unknown if production will continue.

www.spectrum-scientifics.com

 

We recently added a new Smartphone optics product to our offerings: A 2m Endoscope that plugs right into the Android’s Micro-USB port!

6628

Read the rest of this entry »

There was a time I used to brag that I could get a Van De Graaff generator running in a rainstorm. This was a bit of hyperbole, of course but I do have to say that I got pretty good at operating a Van De Graaff generator (VDGG from hereout) when I worked for a science museum. However, my experience was not typical for Van De Graaff users – more often that not, most VDGG’s are rolled to out to be used for one day in the Physics class. They are operated in 2-4 classes during that day and then rolled back into storage. My high school physics teacher, not the most comic of science teachers, consdiered the use of the VDGG and raising up a student’s hair to be ‘obligatory’ for the class.

This limited usage, however, may mean that many teachers don’t really get an idea of what can go wrong with their machinery. Especially when the VDGG is being used by a middle school or elementary school teacher who may not have the experience needed to run the VDGG proeprly.

The following is a list of things that can go wrong, how to diagnose them, and how to fix them. It is by no means comprehesive but should get you the opportunity to operate your VDGG successfully.

734large

Read the rest of this entry »

In the course of science education every student should get the chance to see a Van De Graaff Generatoror Tesla Coil in action. These electrical devices are a fun way to demonstrate properties of electricity. At Spectrum Scientifics we have recently added several new such devices to our offerings. So let’s talk about the Van De Graaffs first!

Van De Graaff Generators: Often referred to as a ‘static generator’ or ‘that thing that makes your hair stand up’ the Van de Graaff emplyes a belt that carries a positive charge to the ball at the top of the generator. This ball gives the generator its classic shape:

734large

Read the rest of this entry »

For a long, long time it seemed like the parts of our solar system were pretty well fixed and decided. Since the discovery of Pluto not much was changed. Sure, we discovered more moons around Saturn and Juptier when various probes flew around them, and discovered less prominent rings around gas giants not named Saturn, but for the most part things did not change. That is, until we started discovering a bunch of trans-Neptune objects and a lot of conventions went out the window: Pluto was demoted to Dwarf Planet status and despite people holding popularity contests to re-instate it as a planet it has remained a Dwarf Planet

But this sort of thing is actually nothing new. In fact the history of Solar System astronomy from Galileo to the present day is riddled with odd controversies like naming conventions, egoism, nationalism, lost chances, new classifications & credit-stealing  that have dogged the history of local astronomy. Here are just 10 incidents or controversies to make realise that the reclassification of Pluto wasn’t anything new.

10) Nationalism rears its ugly head: Uranus was discovered in 1781 and its discoverer, Herschel, wanted to name it after King George III. So he

"Named after a mortal King? How gauche!"

“Named after a mortal King? How gauche!”

termed it ‘The Georgian Planet’. English sky almanacs listed it this way for decades, but needless to say it was not a popular convention outside of England. Other suggestion made were to name it after Herschel, or call it Neptune(!). The final decision was not made until 1850 to name the planet Uranus.

9) Egoism rears its ugly head: Neptune, the furthest planet from our Sun (now that Pluto is a Dwarf Planet), was discovered by astronomer La Verrier in 1846 (he did not actually first observe it, he did the

"At least you were named after a King!"

“At least you were named after a King!”

calculations as to where it could be found). Once discovered, La Verrier wanted to name the planet after himself. To support this naming convention, France released almanacs that listed Neptune as La Verrier and Uranus as Herschel. This did not placate England (who felt that their astronomer, Adams, deserved credit – more on that later) much less the rest of the astronomy world. The name Neptune was suggested, and Laverrier as a planet name lasted only a short time (Georgian Planet, however, lingered).

8) I’m a planet! No, I’m not! Pluto’s demotion is not a new thing. The asteroid Ceres was discovered

"I feel your pain, Pluto".

“I feel your pain, Pluto”.

in 1801 and was quickly classified as a planet. But less than a year later more asteroids were discovered and classifying them all as planets was problematic. It took a while for the convention ‘asteroid’ to be accepted and Ceres was listed as a planet for decades. Now with the new classification of Dwarf Planet, Ceres has been promoted from an asteroid to a Dwarf planet as it fits all the criteria given for that designation.

7) Almost got it! Galileo almost discovered Neptune. In his notes he observed the distant planet while observing Jupiter. The two planets were very close while he was observing. However, Neptune was undergoing its retrograde

"I wonder if...nah.."

“I wonder if…nah..”

motion (where the planets go backwards in the night sky because of the motion of the earth around the sun) and appeared motionless. Galileo considered it to be a fixed star and ignored it. His telescope was not good enough to show details that might indicate it was not a star. Centuries later, an examination of his notes and diagrams was done because someone realized that when Galileo was observing Jupiter when it was in Conjunction with Neptune. Sure enough, it turned out that Galileo was the first human to view the distant planet due to some pure luck, but he couldn’t determine what it actually was.

6) Credit where credit isn’t due: La Verrier wasn’t the only astronomer to lay claim to discovering Neptune. English astronomer Adams also claimed that his calculations led to its discovery. This of course

"Curse You Dennis Rawlins!"

“Curse You Dennis Rawlins!”

caused butting of heads between English and French nationalist astronomers. Finally it was agreed that they would share credit as co-discoverers. However, over a hundred years later, serial credit denier Dennis Rawlins claimed that Adams did not deserve credit for co-discovery as his calculations were way off and almost more harmful than useful (The actual poisition of Neptune was 1 degree from where LaVerrier claimed and 12 degrees from where Adams claimed). It turns out that Rawlins was correct in this case. International astronomers examined the evidence and found Adams should not deserve credit for the discovery. LaVerrier is now considered Neptunes sole discovered. This decision was not made until the late 1990’s.

5) “But, we’re not of Greco-Roman Origin!” The planets are named after Roman gods, which where stolen wholesale from the Greek gods. But Greco-Roman culture did not permeate the entire word. What about Asia? Africa? Native Americans? Indians? Arabs? Well, on the bright planets all of these cultures have their own names. But when it came to the outer planets they were surprisingly clever at adhering to the naming convention. Most cultures, for example, name Neptune after their own historical sea-gods. If they didn’t have a sea-god they would name them after sea monsters. Uranus was a bit trickier as it was a sky god and many cultures do not have such a equivelant diety, so names like ‘Sky King Star’ or ‘Sky God Star’ become the convention.

4) Vulcan, the non-planet (No, we are not talking about Star Trek): When an odd pattern in Mercury’s orbit was discovered in 1859, Newtonian physics could not explain the problem. A solution was suggested that another planet between Mercury and the sun existed that was exuding gravitational force on Mercury. Did we mention this was suggested by LaVerrier, the Neptune discoverer? He suggested this planet be named

"Just get used to me. "

Just get used to me.

Vulcan and requested astronomers search for it. Soon after this was proposed many folks started claming to see this theoretical planet either transiting the sun or with direct observation. Most of these observations were unfounded or unreliable, but one done by astronomer Lescarbault was enough to satisfy Laverrier and he announced its discovery in 1860. Many astronomers were skeptical, and there were many false alarms with sunspots being mistaken for Vulcan. But the problem of Mercury’s orbit remained. Laverrier died and the search for Vulcan waned. In 1915 Einstein solved the problem as being an effect of the strong gravitational effect of the sun having a relativistic effect on Mercury that was much diminished on further planets.

3) Canals on Mars: In the later 19th century, several astronomers reporting seeing ‘channels’ or ‘canals’ on the surface of Mars. Some of them were even mapped. It was even suggested that these channels were artificially Lowell_Mars_channelsdug canals that showed intelligent life on the red planet. As telescope optics improved it was noted that reports of canals dropped off. It turns out that seeing canals on Mars was actually an optical illusion that was an artifact of lower-grade optics. A few adherents stuck with these old canal reports until Mariner 4 mapped the martian surface and showed no such features.

2) Planet X: LaVerrier (again!) noticed some oddness in the orbit of Uranus in the 19th century, this was confirmed by several other observations. It was proposed that a large planet, designated ‘Planet X’ existed past Neptune that was causing this

"I'm not Planet X, but I have a heart!"

I’m not Planet X, but I have a heart!

orbital issue. When Pluto was discovered it was hoped that it was the answer, but Pluto turned out to be too small. Several other searches for Planet X were made but turned up nothing. Some crazies got a hold of the idea and imagined it was doing ludicrous things like hiding behind the Hale-Bopp comet. Eventually the Planet X hypothesis was abandoned when space probe data revealed the error in Uranus’ orbit was caused by a overestimation of the mass of the planet.

1) Phaeton & Titus-Bode Law: You doubtless know of Newton’s Laws of Gravitation, and have probably heard of Kepler’s laws of Planetary Motion. But have you ever heard of of the Titus Bode-Law? (someties just called

"Everything is fine so fa....awwww"

“Everything is fine so fa….awwww”

Bode’s Law). This was a Law that stated that each planet orbiting the sun will be approximately twice the distance from the previous planet. So Venus will be twice the orbit of Mercury, Earth twice the orbit of Venus, etc. This Law got a boost when it was used to find Ceres, which filled the gap between Mars and Jupiter. Since Ceres was not an impressive planet, some proposed it was actually part of a broken or exploded planet they dubbed Phaeton (and idea still suggested by pseudo-scientists today). The discovery of more asteroids lent hope to this idea, but the total mass of the asteroids later found was not enough to make a ‘real’ planet. Bode’s Law got a boost with having an approximate location of Uranus, but flopped badly when used for predicting Neptune’s location.  The Law is now obviously discredited.

www.spectrum-scientifics.com